

Mark Scheme (Results) January 2007

advancing learning, changing lives

GCE

GCE Mathematics

Statistics (6683)

January 2007 6683 Statistics S1 Mark Scheme

Question number	Scheme	Marks				
1. (a)	(£) 17 Just <u>17</u>	B1 (1)				
(b)	$\sum t = 212$ and $\sum m = 61$ (Accept as totals under each column in qu.)	B1, B1				
	$S_{tm} = 2485 - \frac{61 \times 212}{10}$, = 1191.8 awrt <u>1190</u> or 119 (3sf)	M1, A1				
	$S_{tt} = 983.6 \text{ (awrt } 984) \text{ and } S_{mm} = 1728.9 \text{ (awrt } 1730)$ (or 98.4 and 173)	A1, A1 (6)				
(c)	$r = \frac{1191.8}{\sqrt{983.6 \times 1728.9}}$	M1, A1f.t.				
	= 0.913922 awrt 0.914	A1 (3)				
(d)	0.914 (Must be the same as (c) or awrt 0.914)	B1f.t. (r <1)				
	e.g. linear transformation, coding does not affect coefficient (or recalculate)	dB1 (2)				
(e)	0.914 suggests longer spent shopping the more spent. (Idea more time, more spent)	B1				
	0.178 different amounts spent for same time.	B1 (2)				
(f)	e.g. might spend short time buying 1 expensive item <u>OR</u> might spend a long time					
	checking for bargains, talking, buying lots of cheap items.	B1g (1)				
		15 marks				
(b)	M1 for one correct formula seen, f.t. their $\sum t$, $\sum m$ [Use 1 st A1 for 1 correct, 2 st	nd A1 for 2 etc]				
(c)	M1 for attempt at correct formula, $\frac{2485}{\sqrt{2101 \times 5478}}$ scores M1A0A0					
	A1ft f.t. their values for S_{tt} etc from (b) but don't give for $S_{tt} = 5478$ etc (see about	ove)				
	Answer only (awrt 0.914) scores 3/3, 0.913 (i.e. truncation) can score M1A1ft by in	nplication.				
(d)	2^{nd} B1 dependent on 1^{st} B1 Accept $\sum m = 261, \sum m^2 = 8541, \sum tm = 6725 \rightarrow 0.914$					
(e)	One mark for a sensible comment relating to each coefficient					
	For 0.178 allow "little or no link between time and amount spent". Must be	in context.				
	Just saying 0.914 is strong +ve correlation between amount spent and time s	shopping and				
	0.178 is weak correlationscores B0B0.					
(f)	B1g for a sensible, practical suggestion showing that other factors might affect the	ne amount spent.				
	E.g. different day (weekend vs weekday) or time of day (time spent queuing	g if busy)				

Question number	Scheme	Marks					
2. (a)	0.03 D (0.0105) Correct tree shape	M1					
	0.35 \bar{D} A, B and C and 0.35 and 0.25 D (0.015)	A1					
	D(x3) and 0.03, 0.06, 0.05	A1 (3)					
	\bar{D} (May be implied by seeing						
	0.05 D (0.02) $P(A \cap D)$ etc at the ends)						
	C						
	$ar{D}$						
(b)(i)	$P(A \cap D) = 0.35 \times 0.03, = \underline{0.0105} \text{ or } \frac{21}{2000}$	M1, A1					
	P(C) = 0.4 (anywhere)	B1					
(ii)	$P(D) = (i) + 0.25x \ 0.06 + (0.4x0.05)$	M1					
	$= \underline{0.0455} \text{ or } \frac{91}{2000}$	A1 (5)					
(c)	P(D) (11)	M1, A1ft					
	= 0.43956 or $\frac{40}{91}$	A1 (3)					
	[Correct answers only score full marks in each part]	11 marks					
(a)	M1 for tree diagram, 3 branches and then two from each. At least one probabilit	ty attempted.					
(b)	1 st M1 for 0.35x0.03. Allow for equivalent from their tree diagram.	1 for 0.35x0.03. Allow for equivalent from their tree diagram.					
	B1 for $P(C) = 0.4$, can be in correct place on tree diagram or implied by 0.4×0.0	95 in P(D).					
	2 nd M1 for all 3 cases attempted and <u>some</u> correct probabilities seen, including +. C	Can ft their tree.					
	Condone poor use of notation if correct calculations seen. E.g. $P(C \mid D)$ for	$P(C \cap D)$.					
(c)	M1 for attempting correct ratio of probabilities. There must be an attempt to sub-	ostitute some					
	values in a correct formula. If no correct formula and ration not correct ft so	core M0.					
	Writing $P(D C)$ and attempting to find this is M0.						
	Writing $P(D C)$ but calculating correct ratio – ignore notation and mark ratio	os.					
	A1ft must have their 0.4 x0.05 divided by their (ii).						
	If ratio is incorrect ft (0/3) unless correct formula seen and part of ratio is co	errect then M1.					

Question number	Scheme							Marks			
3. (a)	N.B. Part (a) doesn't have to be in a table, could be a list $P(X = 1) =$ etc						B1, B1,	B1			
		х	1	2	3	4	5	6			
		P(X = x)	1	3	5	$\frac{7}{36}$	9/36	11 36			
			36 0.0278,						(Accept awrt 3 s.f)		(3)
(b)	P(3)	+ P(4) + P(5)	$(2) = \frac{2}{3}$	$\frac{1}{6}$ or $\frac{7}{12}$	or awı	t 0.583	<u>3</u>			M1, A1	(2)
(c)	E(<i>X</i>)	$=\frac{1}{36} + 2 \times \frac{3}{36}$	$\frac{6}{6} + \dots, \frac{1}{6}$	$=\frac{161}{36}$	or 4.	.472 o	$4\frac{17}{36}$			M1, A1	(2)
(d)	$E(X^2)$	$=\frac{1}{36}+2^2 \times$	$<\frac{3}{36}+$	$., = \frac{79}{36}$	$\frac{1}{5}$ or fu	ıll exp	ression	or 2	$21\frac{35}{36}$ or awrt 21.97	M1, A1	
	Var(2	$X) = \frac{791}{36} - \left($	$\left(\frac{161}{36}\right)^2$, = <u>1.</u>	9714	*				M1, A10	c.s.o. (4)
(e)	Var(2	$(2-3X)=9\times$	<1.97	or $(-3)^{2}$	² ×1.97	, = 1	7.73		awrt <u>17.7</u> or $\frac{2555}{144}$	M1, A1	(2)
										1.	3 marks
(a)	1 st B	1 for $x = 1$,	6 an	d at lea	st one	correct	t proba	bility	N.B. $\frac{3}{36} = \frac{1}{12}$ and $\frac{9}{36} = \frac{1}{4}$	Ī	
	2 nd B1 for at least 3 correct probabilities										
	3 rd B1 for a fully correct probability distribution.										
(b)											
(c)	M1 for a correct attempt at $E(X)$. Minimum is as printed. Exact answer only scores M1A1.										
	_	·	• 1						ct answers with no worki	· ·	_
(d)	1 st M1 for a correct attempt at $E(X^2)$. Minimum as printed. $\frac{791}{36}$ or awrt 21.97 scores M1A1.										
	$2^{\text{nd}} \text{ M1 for their } E(X^2) - \left(\text{their } E(X)\right)^2$.										
	2^{nd} A1 cso needs awrt 1.97 and $\frac{791}{36} - \left(\frac{161}{36}\right)^2$ or $\frac{2555}{1296}$ or any fully correct expression seen.										
	Can a	accept at leas	<u>st 4 sf</u> f	or both	. i.e. 2	1.97 fo	$r \frac{791}{36}$, 4.472	2 for $\frac{161}{36}$, 20.00 for $\left(\frac{163}{36}\right)$	$\left(\frac{61}{66}\right)^2$.	
(e)	M1	for correc	t use of	Var(a)	(X+b) 1	formul	a or a <u>f</u>	<u>full</u> me	ethod.		
	NB	$-3^2 \times 1.97$	follov	ved by a	awrt 17	7.7 sco	res M1	A1 <u>B</u>	$\frac{8UT}{3}$ -3 ² ×1.97 alone, or f	followed l	by
		– 17.7, sc	ores M	0A0.							

Question number	Scheme	Marks				
4. (a)	Positive skew (both bits)	B1	(1)			
(b)	$19.5 + \frac{(60-29)}{43} \times 10$, = 26.7093 awrt 26.7	M1, A1	(2)			
	(N.B. Use of 60.5 gives 26.825 so allow awrt 26.8)					
	$\mu = \frac{3550}{120} = 29.5833$ or $29\frac{7}{12}$ awrt 29.6	B1				
	$\sigma^2 = \frac{138020}{120} - \mu^2 \text{ or } \sigma = \sqrt{\frac{138020}{120} - \mu^2}$	M1				
	$\sigma = 16.5829$ or $(s = 16.652)$ awrt <u>16.6</u> (or $s = 16.7$)	A1 ((3)			
(d)	$\frac{3(29.6 - 26.7)}{16.6}$	M1A1ft				
	= 0.52 awrt <u>0.520</u> (or with <i>s</i> awrt 0.518) (N.B. 60.5 in (b)awrt 0.499[or with <i>s</i> awrt 0.497])	A1 ((3)			
(e)	0.520 > 0 correct statement about their (d) being >0 or < 0 So it is consistent with (a) ft their (d)	B1ft dB1ft	(2)			
(f)	Use <u>Median</u> Since the data is skewed <u>or</u> less affected by outliers/extreme values	B1 dB1	(2)			
(g)	If the data are <u>symmetrical</u> or <u>skewness is zero</u> or <u>normal/uniform distribution</u> ("mean =median" or "no outliers" or "evenly distributed" all score B0)	B1 14 m	(1) arks			
(b)	M1 for $(19.5 \text{ or } 20) + \frac{(60-29)}{43} \times 10$ or better. Allow 60.5 giving awrt 26.8 for	M1A1				
(c)	Allow their $0.5n$ [or $0.5(n+1)$] instead of 60 [or 60.5] for M1. M1 for a correct expression for σ, σ^2, s or s^2 . NB $\sigma^2 = 274.99$ and $s^2 = 277.30$ Condone poor notation if answer is awrt16.6 (or 16.7 for s)	ı				
(d)	M1 for attempt to use this formula using their values to any accuracy. Condone missing 3. 1 st A1ft for using their values to at least 3sf. Must have the 3. 2 nd A1 for using accurate enough values to get awrt 0.520 (or 0.518 if using <i>s</i>) NB Using only 3 sf gives 0.524 and scores M1A1A0					
(e)	 1st B1 for saying or implying correct sign for their (d). B1g and B1ft. Ignore "correlation" if seen. 2nd B1 for a comment about consistency with their (d) and (a) being positive skew, ft their (d) only This is dependent on 1st B1: so if (d)>0, they say yes, if (d)<0 they say no. 					
(f)	2 nd B1 is dependent upon choosing median.					

uestion number	Scheme	Mark	ks
5. (a)	Time is a <u>continuous</u> variable <u>or</u> data is in a <u>grouped</u> frequency table	B1	(1)
(b)	Area is proportional to frequency or $A \propto f$ or $A = kf$	B1	(1)
(c)	$3.6 \times 2 = 0.8 \times 9$	M1 dM1	(2)
	1 child represented by 0.8	A1 cso	(3)
(d)	$(Total) = \frac{24}{0.8}, = \underline{30}$	M1, A1	(2)
		7 m	arks
(b)	1 st B1 for one of these correct statements.	,	
	"Area proportional to frequency density" or "Area = frequency" is E	5U	
(c)	1 st M1 for a correct combination of any 2 of the 4 numbers: 3.6, 2, 0.8 and 9		
	e.g. 3.6×2 or $\frac{3.6}{0.8}$ or $\frac{0.8}{2}$ etc BUT e.g. $\frac{3.6}{2}$ is M0		
	2 nd M1 dependent on 1 st M1 and for a correct combination of 3 numbers leading	ing to 4 th .	
	May be in separate stages but must see all 4 numbers		
	A1cso for fully correct solution. Both Ms scored, no false working seen and	comment require	ed.
(d)	M1 for $\frac{24}{0.8}$ seen or implied.		

Question number	Scheme	Marks					
6. (a)	Used to simplify <u>or</u> represent a real world problem Cheaper <u>or</u> quicker <u>or</u> easier (than the real situation) <u>or</u> more easily modified To improve understanding of the real world problem Used to predict outcomes from a real world problem (idea of predictions)	(any two lines) B1 B1 (2)					
(b)	(3 or 4) Model used to make predictions. (Idea of predicted values based on the model) (4 or 2) (Experimental) data collected	B1					
	(4 or 3) (Experimental) data collected	B1					
	(7) Model is refined.	B1 (3) 5 marks					
(a)	1 st B1 For one line 2 nd B1 For a second line Be generous for 1 st B1 but stricter for B1B1						
(b)	1 st & 2 nd B1 These two points can be interchanged. Idea of values from (experimental) data and predicted values based on the model. 1 st B1 for predicted values from model e.g. "model used to gain suitable data"						
	2 nd B1 for data collected. Idea of experimental data but "experiment" needn't be explicitly seen						
	3 rd B1 This should be stage 7. Idea of refinement or revision or adjustmen	nt					

Question number	Scheme	Marks		
7. (a)	$P(X < 91) = P(Z < \frac{91-100}{15})$ Attempt standardisation	M1		
	= P(Z < -0.6)	A1		
	= 1 - 0.7257	M1		
	= 0.2743 awrt 0.274	A1 (4)		
(b)	1 - 0.2090 = 0.7910 0.791	B1		
	P(X > 100+k) = 0.2090 or $P(X < 100+k) = 0.7910$ (May be implied)	M1		
	Use of tables to get $z = 0.81$	B1		
	$\frac{100 + k - 100}{15}$,=0.81 (ft their $z = 0.81$, but must be z not prob.)	M1, A1ft		
	k = 12	A1 cao (6)		
		10 marks		
(a)	a) 1^{st} M1 for attempting standardisation. $\pm \frac{(91-\mu)}{\sigma \text{ or } \sigma^2}$. Can use of 109 instead of 91.Use of 90.5 etc is			
	$1^{st} A1 \text{ for } -0.6 \text{(or } +0.6 \text{ if using } 109)$			
	2^{nd} M1 for 1 – probability from tables. Probability should be > 0.5)			
(b)	1 st B1 for 0.791 seen or implied.			
	1^{st} M1 for a correct probability statement, but must use X or Z correctly. Shown of	on diagram is OK		
	2 nd B1 for awrt 0.81 seen (or implied by correct answer - see below) (Calculator g	ives 0.80989)		
	2^{nd} M1 for attempting to standardise e.g. $\frac{100+k-100}{15}$ or $\frac{k}{15}$			
	$\frac{X-100}{15}$ scores 2 nd M0 until the 100+ k is substituted to give k , but may imply 1 st M	1 if <i>k</i> = 112.15 seen		
	1^{st} A1ft for correct equation for k (as written or better). Can be implied by $k = 12$	2.15 (or better)		
	2^{nd} A1 for $k = 12$ only.			
	Answers only			
	k = 112 or 112.15 or better scores 3/6 (on EPEN give first 3 marks)			
	k = 12.15 or better (calculator gives 12.148438) scores 5/6 (i.e loses last	A1 only)		
	k = 12 (no incorrect working seen) scores 6/6			
NB	Using 0.7910 instead of 0.81 gives 11.865 which might be rounded to 12. This shapes a second of the	nould score no		
	more than B1M1B0M1A0A0.			